Imaging ferroelectric domains with a single-spin scanning quantum sensor

Author:

Huxter William S.ORCID,Sarott Martin F.ORCID,Trassin MorganORCID,Degen Christian L.ORCID

Abstract

AbstractThe ability to sensitively image electric fields is important for understanding many nanoelectronic phenomena, including charge accumulation at surfaces1 and interfaces2 and field distributions in active electronic devices3. A particularly exciting application is the visualization of domain patterns in ferroelectric and nanoferroic materials4,5, owing to their potential in computing and data storage6–8. Here, we use a scanning nitrogen-vacancy (NV) microscope, well known for its use in magnetometry9, to image domain patterns in piezoelectric (Pb[Zr0.2Ti0.8]O3) and improper ferroelectric (YMnO3) materials through their electric fields. Electric field detection is enabled by measuring the Stark shift of the NV spin10,11 using a gradiometric detection scheme12. Analysis of the electric field maps allows us to discriminate between different types of surface charge distributions, as well as to reconstruct maps of the three-dimensional electric field vector and charge density. The ability to measure both stray electric and magnetic fields9,13 under ambient conditions opens opportunities for the study of multiferroic and multifunctional materials and devices8,14.

Publisher

Springer Science and Business Media LLC

Subject

General Physics and Astronomy

Cited by 14 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3