A scanning probe microscope compatible with quantum sensing at ambient conditions

Author:

Bian Ke1ORCID,Zheng Wentian1ORCID,Chen Xiakun1ORCID,Zhang Shichen1,Stöhr Rainer23ORCID,Denisenko Andrej23ORCID,Yang Sen4ORCID,Wrachtrup Jörg23,Jiang Ying1567ORCID

Affiliation:

1. International Center for Quantum Materials, School of Physics, Peking University 1 , Beijing 100871, China

2. Third Institute of Physics, University of Stuttgart and Institute for Quantum Science and Technology (IQST) 2 , Stuttgart 70569, Germany

3. Max Planck Institute for Solid State Research 3 , Stuttgart 70569, Germany

4. Department of Physics, The Hong Kong University of Science and Technology 4 , Clear Water Bay, Kowloon, Hong Kong 999077, China

5. Collaborative Innovation Center of Quantum Matter 5 , Beijing 100871, China

6. Interdisciplinary Institute of Light-Element Quantum Materials and Research Center for Light-Element Advanced Materials, Peking University 6 , Beijing 100871, China

7. New Cornerstone Science Laboratory, Peking University 7 , Beijing 100871, China

Abstract

We designed and built up a new type of ambient scanning probe microscope (SPM), which is fully compatible with state-of-the-art quantum sensing technology based on the nitrogen-vacancy (NV) centers in diamond. We chose a qPlus-type tuning fork (Q up to ∼4400) as the current/force sensor of SPM for its high stiffness and stability under various environments, which yields atomic resolution under scanning tunneling microscopy mode and 1.2-nm resolution under atomic force microscopy mode. The tip of SPM can be used to directly image the topography of nanoscale targets on diamond surfaces for quantum sensing and to manipulate the electrostatic environment of NV centers to enhance their sensitivity up to a single proton spin. In addition, we also demonstrated scanning magnetometry and electrometry with a spatial resolution of ∼20 nm. Our new system not only paves the way for integrating atomic/molecular-scale color-center qubits onto SPM tips to produce quantum tips but also provides the possibility of fabricating color-center qubits with nanoscale or atomic precision.

Funder

National Key R&D Program

National Natural Science Foundation of China

Strategic Priority Research Program of the Chinese Academy of Sciences

Beijing Municipal Science and Technology Commission

New Cornerstone Science Foundation

Hong Kong RGC

BMBF

DFG

China Postdoctoral Science Foundation

Publisher

AIP Publishing

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3