Capillary-force-induced collapse lithography for controlled plasmonic nanogap structures

Author:

Kim Inki,Mun JunghoORCID,Hwang Wooseup,Yang YounghwanORCID,Rho JunsukORCID

Abstract

AbstractThe capillary force effect is one of the most important fabrication parameters that must be considered at the micro/nanoscale because it is strong enough to deform micro/nanostructures. However, the deformation of micro/nanostructures due to such capillary forces (e.g., stiction and collapse) has been regarded as an undesirable and uncontrollable obstacle to be avoided during fabrication. Here, we present a capillary-force-induced collapse lithography (CCL) technique, which exploits the capillary force to precisely control the collapse of micro/nanostructures. CCL uses electron-beam lithography, so nanopillars with various shapes can be fabricated by precisely controlling the capillary-force-dominant cohesion process and the nanopillar-geometry-dominant collapse process by adjusting the fabrication parameters such as the development time, electron dose, and shape of the nanopillars. CCL aims to achieve sub-10-nm plasmonic nanogap structures that promote extremely strong focusing of light. CCL is a simple and straightforward method to realize such nanogap structures that are needed for further research such as on plasmonic nanosensors.

Funder

National Research Foundation of Korea

Publisher

Springer Science and Business Media LLC

Subject

Electrical and Electronic Engineering,Industrial and Manufacturing Engineering,Condensed Matter Physics,Materials Science (miscellaneous),Atomic and Molecular Physics, and Optics

Cited by 34 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3