Wafer-scale nanofabrication of sub-5 nm gaps in plasmonic metasurfaces

Author:

Gour Jeetendra1ORCID,Beer Sebastian1ORCID,Paul Pallabi1ORCID,Alberucci Alessandro1ORCID,Steinert Michael1ORCID,Szeghalmi Adriana2ORCID,Siefke Thomas12ORCID,Peschel Ulf3ORCID,Nolte Stefan12ORCID,Zeitner Uwe Detlef124ORCID

Affiliation:

1. Friedrich Schiller University Jena, Faculty of Physics and Astronomy , Abbe Center of Photonics, Institute of Applied Physics , Albert-Einstein-Str. 15, 07745 Jena , Germany

2. Fraunhofer Institute for Applied Optics and Precision Engineering IOF , Albert-Einstein-Str. 7, 07745 Jena , Germany

3. Faculty of Physics and Astronomy , Friedrich Schiller University Jena, Institute of Solid State Theory and Optics , Max-Wien-Platz 1, 07743 Jena , Germany

4. HM Hochschule München University of Applied Sciences , Department of Applied Sciences and Mechatronics , Loristr. 19, 80335 Munich , Germany

Abstract

Abstract In the rapidly evolving field of plasmonic metasurfaces, achieving homogeneous, reliable, and reproducible fabrication of sub-5 nm dielectric nanogaps is a significant challenge. This article presents an advanced fabrication technology that addresses this issue, capable of realizing uniform and reliable vertical nanogap metasurfaces on a whole wafer of 100 mm diameter. By leveraging fast patterning techniques, such as variable-shaped and character projection electron beam lithography (EBL), along with atomic layer deposition (ALD) for defining a few nanometer gaps with sub-nanometer precision, we have developed a flexible nanofabrication technology to achieve gaps as narrow as 2 nm in plasmonic nanoantennas. The quality of our structures is experimentally demonstrated by the observation of resonant localized and collective modes corresponding to the lattice, with Q-factors reaching up to 165. Our technological process opens up new and exciting opportunities to fabricate macroscopic devices harnessing the strong enhancement of light–matter interaction at the single nanometer scale.

Funder

Deutsche Forschungsgemeinschaft

Publisher

Walter de Gruyter GmbH

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3