Poisson Effect‐Assisted Replication Lithography for Rapid Fabrication of Three‐Dimensional Microstructures

Author:

Kim Minsu1,Kyeong Dokyung1,Kwak Moon Kyu1ORCID

Affiliation:

1. Department of Mechanical Engineering Kyungpook National University Daegu 41566 Republic of Korea

Abstract

Demands for micro‐ and nano‐fabrication techniques have been increasing over recent decades due to their foundational importance in fields such as electronics, sensors, displays, biotechnologies, and energy technologies. Still, the rapid and efficient fabrication of complex 3D microstructures has long been a challenge due to the inherent limitations of conventional imprint lithography and the slow fabrication speed of maskless lithography systems using femtosecond lasers. This study introduces a novel lithographic replication method for the rapid replication of intricate 3D microstructures with closed‐loops by leveraging the Poisson effect‐driven lateral deformation of soft molds. Specifically, the suggested technique employs an elastomeric soft mold, engraved with negative cavity parts of the target structure separated by intentional gaps. Lateral deformation of the material allows the separated cavities to assemble for replication of target microstructure and defectless release from the soft mold. In addition to the experimental demonstrations of the proposed method using well‐known materials like polydimethysliloxane (PDMS) for the soft mold and UV‐curable polyurethane acrylate (PUA) for replication, essential considerations such as material selection and master mold design are discussed. The presented method not only broadens the capabilities of imprint lithographic techniques but also holds promise for the large scale, continuous fabrication of complex 3D microstructures.

Funder

Ministry of Education

Ministry of Science and ICT, South Korea

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3