A nanonewton-scale biomimetic mechanosensor

Author:

Zhang Chi,Wu MengxiORCID,Li Ming,Che Lixuan,Tan Zhiguang,Guo Di,Kang Zhan,Cao Shuye,Zhang Siqi,Sui Yu,Sun Jining,Wang Liding,Liu JunshanORCID

Abstract

AbstractBiomimetic mechanosensors have profound implications for various areas, including health care, prosthetics, human‒machine interfaces, and robotics. As one of the most important parameters, the sensitivity of mechanosensors is intrinsically determined by the detection resolution to mechanical force. In this manuscript, we expand the force detection resolution of current biomimetic mechanosensors from the micronewton to nanonewton scale. We develop a nanocrack-based electronic whisker-type mechanosensor that has a detection resolution of 72.2 nN. We achieve the perception of subtle mechanical stimuli, such as tiny objects and airflow, and the recognition of surface morphology down to a 30 nm height, which is the finest resolution ever reported in biomimetic mechanosensors. More importantly, we explore the use of this mechanosensor in wearable devices for sensing gravity field orientation with respect to the body, which has not been previously achieved by these types of sensors. We develop a wearable smart system for sensing the body’s posture and movements, which can be used for remote monitoring of falls in elderly people. In summary, the proposed device offers great advantages for not only improving sensing ability but also expanding functions and thus can be used in many fields not currently served by mechanosensors.

Publisher

Springer Science and Business Media LLC

Subject

Electrical and Electronic Engineering,Industrial and Manufacturing Engineering,Condensed Matter Physics,Materials Science (miscellaneous),Atomic and Molecular Physics, and Optics

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Flexible flow sensors-enabled intelligent life;Journal of Micromechanics and Microengineering;2024-06-06

2. Recent Advances in Biomimetics for the Development of Bio-Inspired Prosthetic Limbs;Biomimetics;2024-04-30

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3