Abstract
AbstractTransparent microelectrode arrays enable simultaneous electrical recording and optical imaging of neuronal networks in the brain. Electrodes made of the conducting polymer poly(3,4-ethylenedioxythiophene) doped with polystyrene sulfonate (PEDOT:PSS) are transparent; however, device fabrication necessitates specific processes to avoid deterioration of the organic material. Here, we present an innovative fabrication scheme for a neural probe that consists of transparent PEDOT:PSS electrodes and demonstrate its compatibility with 2-photon microscopy. The electrodes show suitable impedance to record local field potentials from the cortex of mice and sufficient transparency to visualize GCaMP6f-expressing neurons underneath the PEDOT:PSS features. The results validate the performance of the neural probe, which paves the way to study the complex dynamics of in vivo neuronal activity with both a high spatial and temporal resolution to better understand the brain.
Funder
Agence Nationale de la Recherche
Publisher
Springer Science and Business Media LLC
Subject
Electrical and Electronic Engineering,Industrial and Manufacturing Engineering,Condensed Matter Physics,Materials Science (miscellaneous),Atomic and Molecular Physics, and Optics
Cited by
14 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献