Compact eternal diffractive neural network chip for extreme environments

Author:

Dong YiboORCID,Lin DajunORCID,Chen Long,Li Baoli,Chen XiORCID,Zhang Qiming,Luan HaitaoORCID,Fang XinyuanORCID,Gu MinORCID

Abstract

AbstractArtificial intelligence applications in extreme environments place high demands on hardware robustness, power consumption, and speed. Recently, diffractive neural networks have demonstrated superb advantages in high-throughput light-speed reasoning. However, the robustness and lifetime of existing diffractive neural networks cannot be guaranteed, severely limiting their compactness and long-term inference accuracy. Here, we have developed a millimeter-scale and robust bilayer-integrated diffractive neural network chip with virtually unlimited lifetime for optical inference. The two diffractive layers with binary phase modulation were engraved on both sides of a quartz wafer. Optical inference of handwritten digital recognition was demonstrated. The results showed that the chip achieved 82% recognition accuracy for ten types of digits. Moreover, the chip demonstrated high-performance stability at high temperatures. The room-temperature lifetime was estimated to be 1.84×1023 trillion years. Our chip satisfies the requirements for diffractive neural network hardware with high robustness, making it suitable for use in extreme environments.

Funder

Science and Technology Commission of Shanghai Municipality

National Natural Science Foundation of China

Publisher

Springer Science and Business Media LLC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3