A knowledge-inherited learning for intelligent metasurface design and assembly

Author:

Jia Yuetian,Qian Chao,Fan Zhixiang,Cai Tong,Li Er-PingORCID,Chen HongshengORCID

Abstract

AbstractRecent breakthroughs in deep learning have ushered in an essential tool for optics and photonics, recurring in various applications of material design, system optimization, and automation control. Deep learning-enabled on-demand metasurface design has been the subject of extensive expansion, as it can alleviate the time-consuming, low-efficiency, and experience-orientated shortcomings in conventional numerical simulations and physics-based methods. However, collecting samples and training neural networks are fundamentally confined to predefined individual metamaterials and tend to fail for large problem sizes. Inspired by object-oriented C++ programming, we propose a knowledge-inherited paradigm for multi-object and shape-unbound metasurface inverse design. Each inherited neural network carries knowledge from the “parent” metasurface and then is freely assembled to construct the “offspring” metasurface; such a process is as simple as building a container-type house. We benchmark the paradigm by the free design of aperiodic and periodic metasurfaces, with accuracies that reach 86.7%. Furthermore, we present an intelligent origami metasurface to facilitate compatible and lightweight satellite communication facilities. Our work opens up a new avenue for automatic metasurface design and leverages the assemblability to broaden the adaptability of intelligent metadevices.

Funder

National Natural Science Foundation of China

Publisher

Springer Science and Business Media LLC

Subject

Atomic and Molecular Physics, and Optics,Electronic, Optical and Magnetic Materials

Cited by 15 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Chimera metasurface for multiterrain invisibility;Proceedings of the National Academy of Sciences;2024-01-29

2. All dielectric metasurface based diffractive neural networks for 1-bit adder;Nanophotonics;2024-01-24

3. Autonomous aeroamphibious invisibility cloak with stochastic-evolution learning;Advanced Photonics;2024-01-12

4. Mechanically Adjustable Radiative Heat Transfer Between hBN and α-MoO3 Plates;IEEE Transactions on Electron Devices;2024-01

5. 3D neuromorphic photonics;Neuromorphic Photonic Devices and Applications;2024

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3