Nrf2 activation does not affect adenoma development in a mouse model of colorectal cancer

Author:

Knatko Elena V.,Castro Cecilia,Higgins Maureen,Zhang Ying,Honda TadashiORCID,Henderson Colin J.,Wolf C. Roland,Griffin Julian L.ORCID,Dinkova-Kostova Albena T.ORCID

Abstract

AbstractTranscription factor nuclear factor erythroid 2 p45-related factor 2 (Nrf2) and its main negative regulator, Kelch-like ECH associated protein 1 (Keap1), are at the interface between redox and intermediary metabolism. Nrf2 activation is protective in models of human disease and has benefits in clinical trials. Consequently, the Keap1/Nrf2 protein complex is a drug target. However, in cancer Nrf2 plays a dual role, raising concerns that Nrf2 activators may promote growth of early neoplasms. To address this concern, we examined the role of Nrf2 in development of colorectal adenomas by employing genetic, pharmacological, and metabolomic approaches. We found that colorectal adenomas that form in Gstp−/−: ApcMin/+ mice are characterized by altered one-carbon metabolism and that genetic activation, but not disruption of Nrf2, enhances these metabolic alterations. However, this enhancement is modest compared to the magnitude of metabolic differences between tumor and peri-tumoral tissues, suggesting that the metabolic changes conferred by Nrf2 activation may have little contribution to the early stages of carcinogenesis. Indeed, neither genetic (by Keap1 knockdown) nor pharmacological Nrf2 activation, nor its disruption, affected colorectal adenoma formation in this model. We conclude that pharmacological Nrf2 activation is unlikely to impact the early stages of development of colorectal cancer.

Funder

Cancer Research UK

Stony Brook Foundation Reata Pharmaceuticals

Publisher

Springer Science and Business Media LLC

Subject

General Agricultural and Biological Sciences,General Biochemistry, Genetics and Molecular Biology,Medicine (miscellaneous)

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3