Abstract
AbstractAtomic layer infiltration technology allows the formation of a nanometer-thick polymer-inorganic hybrid barrier layer in polymer material for flexible organic light-emitting diode (OLED) displays. In this study, according to transmission electron microscopy and secondary-ion mass spectrometry analysis results under various process conditions, a compact polymer-inorganic hybrid nanolayer was successfully formed in a polymer and good barrier performance was revealed with a low water vapor transmission rate under optimal process conditions. Additionally, through gas chromatography-mass spectrometry measurements after ultra-violet radiation testing, polymer out-gassing decreased compared to bare polymers. Based on barrier properties, the polymer with a polymer-inorganic hybrid barrier nanolayer was applied to a flexible OLED display as a substrate. During storage tests and folding tests, the flexible OLED display exhibits good reliability and better flexibility compared to those with an inorganic barrier layer. These results confirm that the polymer-inorganic hybrid nanolayer is suitable for barrier layer formation in flexible OLED displays.
Publisher
Springer Science and Business Media LLC
Subject
Electrical and Electronic Engineering,General Materials Science
Cited by
13 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献