Fluoropolymer-based organic memristor with multifunctionality for flexible neural network system

Author:

Kim Min-Hwi,Park Hea-Lim,Kim Min-HoiORCID,Jang Jaewon,Bae Jin-HyukORCID,Kang In Man,Lee Sin-HyungORCID

Abstract

AbstractIn this study, we propose an effective strategy for achieving the flexible one organic transistor–one organic memristor (1T–1R) synapse using the multifunctional organic memristor. The dynamics of the conductive nanofilament (CF) in a hydrophobic fluoropolymer medium is explored and a hydrophobic fluoropolymer-based organic memristor is developed. The flexible 1T–1R synapse can be fabricated using the solution process because the hydrophobic fluorinated polymer layer is produced on the organic transistor without degradation of the underlying semiconductor. The developed flexible synapse exhibits multilevel conductance with high reliability and stability because of the fluoropolymer film, which acts as a medium for CF growth and an encapsulating layer for the organic transistor. Moreover, the synapse cell shows potential for high-density memory systems and practical neural networks. This effective concept for developing practical flexible neural networks would be a basic platform to realize the smart wearable electronics.

Publisher

Springer Science and Business Media LLC

Subject

Electrical and Electronic Engineering,General Materials Science

Reference66 articles.

1. Kim, S., Lim, M., Kim, Y., Kim, H.-D. & Choi, S.-J. Impact of synaptic device variations on pattern recognition accuracy in a hardware neural network. Sci. Rep. 8, 2638 (2018).

2. Joshi, V. et al. Accurate deep neural network inference using computational phase-change memory. Nat. Commun. 11, 2473 (2020).

3. Xiang, Y. et al. Efficient and robust spike-driven deep convolutional neural networks based on NOR flash computing array. IEEE Trans. Electron Devices 67, 2329–2335 (2020).

4. Seo, S. et al. Artificial van der Waals hybrid synapse and its application to acoustic pattern recognition. Nat. Commun. 11, 3936 (2020).

5. Zhu, L. Q., Wan, C. J., Guo, L. Q., Shi, Y. & Wan, Q. Artificial synapse network on inorganic proton conductor for neuromorphic systems. Nat. Commun. 5, 3158 (2014).

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3