The drivers of plant community composition have shifted from external to internal processes over the past 20,000 years

Author:

Doncaster C. PatrickORCID,Edwards Mary E.,Clarke Charlotte L.,Alsos Inger GreveORCID

Abstract

AbstractInternal and external factors regulating the past composition of plant communities are difficult to identify in palaeo-vegetation records. Here, we develop an index of relative entropy of community assembly, which applies to changes in the composition of a community over time, measuring disorder in its assembly relative to disassembly. Historical periods of relatively ordered assembly (negative index values) are characteristic of a community undergoing endogenous self-organisation, in contrast to relatively disordered assembly (positive values) characterising periods of exogenous abiotic forcing. We quantified the relative entropy index for a 22,000-year time-series of tundra vegetation obtained in the Polar Urals, based on sedimentary DNA. We find it most positive during the Late Pleistocene characterized by persistent taxa, and most negative during the post-glacial Holocene characterized by more ephemeral floras. Changes in relative entropy coincide with changes in regional temperature as reconstructed from stable oxygen composition of an Arctic ice-core. Our results suggest that temperature strongly influenced community assembly in the Polar Urals until about 9000 years before present, after which endogenous community self-organization prevailed through to the present. We conclude that time-series of community composition can reveal changes in the balance between internal and external influences on taxonomic turnover and resulting diversity.

Publisher

Springer Science and Business Media LLC

Subject

General Earth and Planetary Sciences,General Environmental Science

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3