Chemical transport models often underestimate inorganic aerosol acidity in remote regions of the atmosphere

Author:

Nault Benjamin A.ORCID,Campuzano-Jost PedroORCID,Day Douglas A.,Jo Duseong S.ORCID,Schroder Jason C.,Allen Hannah M.,Bahreini RoyaORCID,Bian Huisheng,Blake Donald R.,Chin MianORCID,Clegg Simon L.,Colarco Peter R.ORCID,Crounse John D.ORCID,Cubison Michael J.,DeCarlo Peter F.ORCID,Dibb Jack E.ORCID,Diskin Glenn S.ORCID,Hodzic Alma,Hu Weiwei,Katich Joseph M.,Kim Michelle J.,Kodros John K.ORCID,Kupc AgnieszkaORCID,Lopez-Hilfiker Felipe D.,Marais Eloise A.ORCID,Middlebrook Ann M.ORCID,Andrew Neuman J.,Nowak John B.ORCID,Palm Brett B.ORCID,Paulot FabienORCID,Pierce Jeffrey R.ORCID,Schill Gregory P.ORCID,Scheuer Eric,Thornton Joel A.,Tsigaridis KostasORCID,Wennberg Paul O.ORCID,Williamson Christina J.ORCID,Jimenez Jose L.ORCID

Abstract

AbstractThe inorganic fraction of fine particles affects numerous physicochemical processes in the atmosphere. However, there is large uncertainty in its burden and composition due to limited global measurements. Here, we present observations from eleven different aircraft campaigns from around the globe and investigate how aerosol pH and ammonium balance change from polluted to remote regions, such as over the oceans. Both parameters show increasing acidity with remoteness, at all altitudes, with pH decreasing from about 3 to about −1 and ammonium balance decreasing from almost 1 to nearly 0. We compare these observations against nine widely used chemical transport models and find that the simulations show more scatter (generally R2 < 0.50) and typically predict less acidic aerosol in the most remote regions. These differences in observations and predictions are likely to result in underestimating the model-predicted direct radiative cooling effect for sulfate, nitrate, and ammonium aerosol by 15–39%.

Publisher

Springer Science and Business Media LLC

Subject

General Earth and Planetary Sciences,General Environmental Science

Reference116 articles.

Cited by 31 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3