Influence of the Neutralization Degree on the Ice Nucleation Ability of Ammoniated Sulfate Particles

Author:

Bertozzi Barbara12ORCID,Wagner Robert1ORCID,Höhler Kristina1ORCID,Saathoff Harald1,Möhler Ottmar1ORCID,Leisner Thomas1

Affiliation:

1. Institute of Meteorology and Climate Research Karlsruhe Institute of Technology Karlsruhe Germany

2. Now at Laboratory of Atmospheric Chemistry Paul Scherrer Institute Villigen Switzerland

Abstract

AbstractPrevious laboratory measurements suggest that ammonium sulfate crystals (AS, (NH4)2SO4) are efficient ice‐nucleating particles under cirrus conditions. Sulfate particles not completely neutralized by ammonium are less well studied and include two other solids, ammonium bisulfate (AHS, NH4HSO4) and letovicite (LET, (NH4)3H(SO4)2). In this work, we have obtained the first comprehensive data set for the heterogeneous ice nucleation ability of crystallized particles in the AS–LET–AHS system as a function of their degree of neutralization at a temperature of about 220 K. Quantitative data on nucleation onsets, ice‐active fractions, and ice nucleation active surface site densities were derived from expansion cooling experiments in a large cloud chamber and measurements with two continuous flow diffusion chambers. We found a strong dependence of the efficiency and the mode of heterogenous ice nucleation on the degree of neutralization. Ice formation for AS, mixed AS/LET, and LET crystals occurred by the deposition nucleation or pore condensation and freezing mode. The lowest nucleation onset was observed for AS, where 0.1% of the particles became ice‐active at an ice saturation ratio of 1.25. This threshold gradually increased to 1.35 for LET, and abruptly further to 1.45 for mixed LET/AHS crystals, which partially deliquesced and induced ice formation via immersion freezing. Pure AHS crystals did not form due to the inhibition of efflorescence. Our data allow for a more sophisticated treatment of ice formation in the AS–LET–AHS system in future model simulations, which have so far only considered the available data for AS alone.

Publisher

American Geophysical Union (AGU)

Subject

Space and Planetary Science,Earth and Planetary Sciences (miscellaneous),Atmospheric Science,Geophysics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3