Dense geophysical observations reveal a triggered, concurrent multi-fault rupture at the Mendocino Triple Junction

Author:

Yeck William L.ORCID,Shelly David R.ORCID,Materna Kathryn Z.,Goldberg Dara E.,Earle Paul S.

Abstract

AbstractA central question of earthquake science is how far ruptures can jump from one fault to another, because cascading ruptures can increase the shaking of a seismic event. Earthquake science relies on earthquake catalogs and therefore how complex ruptures get documented and cataloged has important implications. Recent investments in geophysical instrumentation allow us to resolve increasingly complex, multi-fault ruptures for even moderate-sized earthquakes. We combine dense seismic and geodetic measurements to reveal an enigmatic rupture in late 2021 at the Mendocino Triple Junction in northern California. We show that rupture was dynamically triggered, yet concurrent, on two distinct faults roughly 30 km apart. Thus, this rupture combines features of complex ruptures usually considered to be single earthquakes, and triggered ruptures considered as multiple earthquakes. This event illustrates that moderate-sized earthquakes can exhibit similar complexity to that more commonly documented for large earthquakes.

Publisher

Springer Science and Business Media LLC

Subject

General Earth and Planetary Sciences,General Environmental Science

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3