Comparing subduction ground-motion models to observations for Cascadia

Author:

Smith James A1ORCID,Moschetti Morgan P1ORCID,Thompson Eric M1ORCID

Affiliation:

1. US Geological Survey, Geologic Hazards Science Center, Golden, CO, USA

Abstract

We evaluate Cascadia subduction ground-motion models (GMMs), considered for the 2023 US National Seismic Hazard Model (NSHM) update, by comparing observations to model predictions. The observations comprise regional recordings from intraslab earthquakes, including contributions from 2021 and 2022 events in southern Cascadia and global records from interface earthquakes. Since the 2018 NSHM update, new GMMs for Cascadia have been published by the Next Generation Attenuation (NGA)-Subduction Project that require independent evaluation. In the regional intraslab comparisons, we highlight a characteristic frequency dependence for Cascadia data, with short periods having lower ground motions and longer periods being comparable to other subduction zones. We evaluate differences in northern and southern Cascadia and find that the NGA-Subduction GMMs developed using southern Cascadia data perform better in this region than the model that did not consider these data. We compare ground-motion variability in Cascadia with the NGA-Subduction model predictions and find differences at short periods ( T = 0.1 s) due to the use of global versus regional data in the development of these models. Moreover, the within-event component of aleatory variability from the GMMs overpredicts the standard deviation of Cascadia recordings at very short periods ( T < 0.05 s). Using global interface earthquakes as a proxy to evaluate the Cascadia GMMs, we find long-period overprediction from a simulation-based GMM and some of the empirical GMMs. When comparing recent observations, we find a similar misfit to GMMs and the 2010 and 2022 Ferndale earthquakes. Finally, we observe different basin amplification factors arising in different subsets of the data, which indicate that differences in basin factors between empirical GMMs could arise from the data selection choices by the developers. As part of evaluating the regional basin terms, we apply basin amplification factors from the magnitude 9 Cascadia earthquake simulations to the empirical GMMs for interface earthquakes. The comparisons presented in this study indicate that the NGA-Subduction GMMs for Cascadia perform well relative to observations and older subduction GMMs.

Publisher

SAGE Publications

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3