The 2018 update of the US National Seismic Hazard Model: Overview of model and implications

Author:

Petersen Mark D.1,Shumway Allison M.1,Powers Peter M.1,Mueller Charles S.1,Moschetti Morgan P.1,Frankel Arthur D.2,Rezaeian Sanaz1,McNamara Daniel E.1,Luco Nico1,Boyd Oliver S.1,Rukstales Kenneth S.1,Jaiswal Kishor S.1,Thompson Eric M.1,Hoover Susan M.1,Clayton Brandon S.1,Field Edward H.1,Zeng Yuehua1

Affiliation:

1. US Geological Survey, Denver Federal Center, Denver, CO, USA

2. US Geological Survey, University of Washington, Seattle, WA, USA

Abstract

During 2017–2018, the National Seismic Hazard Model for the conterminous United States was updated as follows: (1) an updated seismicity catalog was incorporated, which includes new earthquakes that occurred from 2013 to 2017; (2) in the central and eastern United States (CEUS), new ground motion models were updated that incorporate updated median estimates, modified assessments of the associated epistemic uncertainties and aleatory variabilities, and new soil amplification factors; (3) in the western United States (WUS), amplified shaking estimates of long-period ground motions at sites overlying deep sedimentary basins in the Los Angeles, San Francisco, Seattle, and Salt Lake City areas were incorporated; and (4) in the conterminous United States, seismic hazard is calculated for 22 periods (from 0.01 to 10 s) and 8 uniform VS30 maps (ranging from 1500 to 150 m/s). We also include a description of updated computer codes and modeling details. Results show increased ground shaking in many (but not all) locations across the CEUS (up to ~30%), as well as near the four urban areas overlying deep sedimentary basins in the WUS (up to ~50%). Due to population growth and these increased hazard estimates, more people live or work in areas of high or moderate seismic hazard than ever before, leading to higher risk of undesirable consequences from forecasted future ground shaking.

Publisher

SAGE Publications

Subject

Geophysics,Geotechnical Engineering and Engineering Geology

Reference79 articles.

Cited by 143 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3