Data Verification Tools for Minimizing Management Costs of Dense Air-Quality Monitoring Networks

Author:

Miskell Georgia12,Salmond Jennifer1,Alavi-Shoshtari Maryam23,Bart Mark4,Ainslie Bruce5,Grange Stuart12,McKendry Ian G.6,Henshaw Geoff S.7,Williams David E.2

Affiliation:

1. School of Environment, Faculty of Science, University of Auckland, Auckland 1142, New Zealand

2. MacDiarmid Institute for Advanced Materials and Nanotechnology, School of Chemical Sciences, Faculty of Science, University of Auckland, Auckland 1142, New Zealand

3. Department of Mathematics, Faculty of Science, University of Auckland 1142, Auckland, New Zealand

4. Air Quality Ltd, 40A George Street, Mt Eden, Auckland 1024, New Zealand

5. Meteorological Services of Canada, Environment Canada, Vancouver V1V 1V7, Canada

6. Department of Geography, The University of British Columbia, Vancouver V6T 1ZU, Canada

7. Aeroqual Ltd, 109 Valley Road, Mt Eden, Auckland 1024, New Zealand

Funder

Ministry of Business, Innovation and Employment

Callaghan Innovation

Natural Sciences and Engineering Research Council of Canada

MacDiarmid Institute

Publisher

American Chemical Society (ACS)

Subject

Environmental Chemistry,General Chemistry

Cited by 20 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Performance evaluation of MOMA (MOment MAtching) – a remote network calibration technique for PM2.5 and PM10 sensors;Atmospheric Measurement Techniques;2023-10-18

2. Spatiotemporal distribution of pollutants and impact of local meteorology on source influence on pollutants’ level in a traffic air-shed in Lagos megacity, Nigeria;Environmental Monitoring and Assessment;2023-08-31

3. Modelling calibration uncertainty in networks of environmental sensors;Journal of the Royal Statistical Society Series C: Applied Statistics;2023-08-24

4. Improving data reliability: A quality control practice for low-cost PM2.5 sensor network;Science of The Total Environment;2021-07

5. Case studies;Statistical Process Monitoring Using Advanced Data-Driven and Deep Learning Approaches;2021

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3