Modelling calibration uncertainty in networks of environmental sensors

Author:

Smith Michael Thomas1,Ross Magnus2,Ssematimba Joel3,Álvarez Mauricio A2,Bainomugisha Engineer3,Wilkinson Richard4

Affiliation:

1. Department of Computer Science, University of Sheffield , Sheffield , UK

2. Department of Computer Science, University of Manchester , Manchester , UK

3. Department of Computer Science, Makerere University , Kampala , Uganda

4. School of Mathematical Sciences, University of Nottingham , Nottingham , UK

Abstract

Abstract Networks of low-cost environmental sensors are becoming ubiquitous, but often suffer from poor accuracies and drift. Regular colocation with reference sensors allows recalibration but is complicated and expensive. Alternatively, the calibration can be transferred using low-cost, mobile sensors. However, inferring the calibration (with uncertainty) becomes difficult. We propose a variational approach to model the calibration across the network. We demonstrate the approach on synthetic and real air pollution data and find it can perform better than the state-of-the-art (multi-hop calibration). In Summary: The method achieves uncertainty-quantified calibration, which has been one of the barriers to low-cost sensor deployment.

Funder

EPSRC

Publisher

Oxford University Press (OUP)

Subject

Statistics, Probability and Uncertainty,Statistics and Probability

Reference63 articles.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3