Performance evaluation of MOMA (MOment MAtching) – a remote network calibration technique for PM2.5 and PM10 sensors
-
Published:2023-10-18
Issue:20
Volume:16
Page:4709-4722
-
ISSN:1867-8548
-
Container-title:Atmospheric Measurement Techniques
-
language:en
-
Short-container-title:Atmos. Meas. Tech.
Author:
Weissert Lena Francesca,Henshaw Geoff Steven,Williams David Edward,Feenstra Brandon,Lam Randy,Collier-Oxandale Ashley,Papapostolou Vasileios,Polidori Andrea
Abstract
Abstract. We evaluate the potential of using a previously developed remote calibration framework we name MOMA (MOment MAtching) to improve the data quality in particulate matter (PM) sensors deployed in hierarchical networks. MOMA assumes that a network of reference instruments can be used as “proxies” to calibrate the sensors given that the probability distribution over time of the data at the proxy site is similar to that at a sensor site. We use the reference network to test the suitability of proxies selected based on distance versus proxies selected based on land use similarity. The performance of MOMA for PM sensors is tested with sensors co-located with reference instruments across three Southern Californian regions, representing a range of land uses, topography and meteorology, and calibrated against a distant proxy reference. We compare two calibration approaches: one where calibration parameters get calculated and applied at monthly intervals and one which uses a drift detection framework for calibration. We demonstrate that MOMA improves the accuracy of the data when compared against the co-located reference data. The improvement was more visible for PM10 and when using the drift detection approach. We also highlight that sensor drift was associated with variations in particle composition rather than instrumental factors, explaining the better performance of the drift detection approach if wind conditions and associated PM sources varied within a month.
Publisher
Copernicus GmbH
Subject
Atmospheric Science
Reference59 articles.
1. Aguilera, R., Gershunov, A., Ilango, S. D., Guzman-Morales, J., and Benmarhnia, T.: Santa Ana Winds of Southern California Impact PM2.5 With and Without Smoke From Wildfires, GeoHealth, 4, 1–9, https://doi.org/10.1029/2019GH000225, 2020. 2. Anderson, J. O., Thundiyil, J. G., and Stolbach, A.: Clearing the Air: A Review of the Effects of Particulate Matter Air Pollution on Human Health, J. Med. Toxicol., 8, 166–175, https://doi.org/10.1007/s13181-011-0203-1, 2012. 3. Aphalo, P. J.: ggpmisc: Miscellaneous Extensions to “ggplot2”, https://CRAN.R-project.org/package=ggpmisc (last access: 16 October 2023), 2023. 4. Atkinson, R. W., Fuller, G. W., Anderson, H. R., Harrison, R. M., and Armstrong, B.: Urban Ambient Particle Metrics and Health: A Time-series Analysis, Epidemiology, 21, 501–511, https://doi.org/10.1097/EDE.0b013e3181debc88, 2010. 5. Badura, M., Batog, P., Drzeniecka-Osiadacz, A., and Modzel, P.: Evaluation of Low-Cost Sensors for Ambient PM 2.5 Monitoring, J. Sens., 2018, 1–16, https://doi.org/10.1155/2018/5096540, 2018.
Cited by
3 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
|
|