Mechanism of Pressure-Driven Band Gap Evolutions in Lead-Free Halide Double Perovskites
Author:
Affiliation:
1. Simulations of Physical Systems Division, Beijing Computational Science Research Center, Beijing 100193, China
2. Department of Chemistry and Biochemistry, California State University Northridge, Northridge, California 91330, United States
Funder
China Postdoctoral Science Foundation
National Natural Science Foundation of China
Division of Materials Research
Publisher
American Chemical Society (ACS)
Subject
Surfaces, Coatings and Films,Physical and Theoretical Chemistry,General Energy,Electronic, Optical and Magnetic Materials
Link
https://pubs.acs.org/doi/pdf/10.1021/acs.jpcc.2c03250
Reference43 articles.
1. Perovskite-perovskite tandem photovoltaics with optimized band gaps
2. Compositional engineering of perovskite materials for high-performance solar cells
3. Nanocrystals of Cesium Lead Halide Perovskites (CsPbX3, X = Cl, Br, and I): Novel Optoelectronic Materials Showing Bright Emission with Wide Color Gamut
4. Fully textured monolithic perovskite/silicon tandem solar cells with 25.2% power conversion efficiency
5. Promises and challenges of perovskite solar cells
Cited by 8 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
1. Pressure influenced electronic phase transition, mechanical, optoelectronic, and transport characteristics of double perovskite Rb2AgSbCl6: A first-principles investigation;Chemical Physics Letters;2024-07
2. Effective bandgap narrowing and enhanced optoelectronic performance of Cs2PtBr6 double perovskites by pressure engineering;Optics Letters;2024-01-18
3. High-pressure effects on the electronic properties and photoluminescence of Ag-doped CsCu2I3;Physical Chemistry Chemical Physics;2024
4. Composition Dependent Strain Engineering of Lead-Free Halide Double Perovskite: Computational Insights;The Journal of Physical Chemistry Letters;2023-10-13
5. Pressure-Driven Band Gap Narrowing in Rb2AgPdCl5: Toward the Shockley–Queisser Limit of Lead-free Double Perovskites;The Journal of Physical Chemistry C;2023-09-20
1.学者识别学者识别
2.学术分析学术分析
3.人才评估人才评估
"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370
www.globalauthorid.com
TOP
Copyright © 2019-2024 北京同舟云网络信息技术有限公司 京公网安备11010802033243号 京ICP备18003416号-3