Perovskite-perovskite tandem photovoltaics with optimized band gaps

Author:

Eperon Giles E.12,Leijtens Tomas3,Bush Kevin A.3,Prasanna Rohit3,Green Thomas1,Wang Jacob Tse-Wei1,McMeekin David P.1,Volonakis George4,Milot Rebecca L.1,May Richard2,Palmstrom Axel5,Slotcavage Daniel J.3,Belisle Rebecca A.3,Patel Jay B.1,Parrott Elizabeth S.1,Sutton Rebecca J.1,Ma Wen6,Moghadam Farhad6,Conings Bert17,Babayigit Aslihan17,Boyen Hans-Gerd7,Bent Stacey5,Giustino Feliciano4,Herz Laura M.1,Johnston Michael B.1,McGehee Michael D.2,Snaith Henry J.1

Affiliation:

1. Department of Physics, University of Oxford, Clarendon Laboratory, Parks Road, Oxford OX1 3PU, UK.

2. Department of Chemistry, University of Washington, Seattle, WA, USA.

3. Department of Materials Science, Stanford University, Lomita Mall, Stanford, CA, USA.

4. Department of Materials, University of Oxford, Parks Road, Oxford OX1 3PH, UK.

5. Department of Chemical Engineering, Stanford University, Via Ortega, Stanford, CA, USA.

6. SunPreme, Palomar Avenue, Sunnyvale, CA, USA.

7. Institute for Materials Research, Hasselt University, Diepenbeek, Belgium.

Abstract

Tandem perovskite cells The ready processability of organic-inorganic perovskite materials for solar cells should enable the fabrication of tandem solar cells, in which the top layer is tuned to absorb shorter wavelengths and the lower layer to absorb the remaining longer-wavelength light. The difficulty in making an all-perovskite cell is finding a material that absorbs the red end of the spectrum. Eperon et al. developed an infrared-absorbing mixed tin-lead material that can deliver 14.8% efficiency on its own and 20.3% efficiency in a four-terminal tandem cell. Science , this issue p. 861

Funder

Horizon 2020

Leverhulme Trust

UK Engineering and Physical Sciences Research Council

European Union Seventh Framework Programme

Marie Sklodowska Curie International Fellowship

Publisher

American Association for the Advancement of Science (AAAS)

Subject

Multidisciplinary

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3