Model Based Indirect Conicity Estimation Technique for Solid Axle Railway Wheelset

Author:

Saba Erum1,Kalwer Imtiaz Hussain2,Unar Mukhtiar Ali1

Affiliation:

1. Institute of Information and Communication Technologies, Mehran University of Engineering and Technology, Jamshoro, Sindh, Pakistan.

2. Department of Electrical Engineering, DHA Suffa University, Karachi, Sindh, Pakistan.

Abstract

Conicity is an important characteristic that helps the railway vehicle to steer itself down the track. However during the operation, the conicity tends to change inconsistently due to frictional contact at the wheel-rail interface. Safety, reliability and ride comfort which are utmost importance for journey are adversely affected due to the changes in conicity level beyond certain limit. Several techniques have been employed for monitoring the health of the railway wheelset however still a significant potential exists to investigate the wheelset conicity. This paper presents a model based technique to monitor the wheelset condition which contributes to the wheel flats due to decrease in conicity level and the problem of false flanges due to increased level of conicity. In this paper an unconstrained solid axle railway wheelset is considered for study. The dynamic behavior of the wheelset is analyzed at different conicity levels to understand the effect of the conicity on the wheelset. In order to demonstrate the potential of this research work a simulation model is developed in Matlab/ Simulink to mimic the behavior of an actual wheelset. Simplified linearized model of the wheelset is used to estimate the dynamics of the wheelset. From the simulation results it is evident that the frequency of vibration is changing with the changes in conicity level. In this way using the proposed method the conicity level is indirectly identified. The results produced by simulation model are satisfactory.

Publisher

Mehran University of Engineering and Technology

Subject

General Medicine

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3