Deep learning-based fault detection in railway wheelsets using time series analysis

Author:

Shaikh Khurram,Hussain Imtiaz,Chowdhry Bhawani Shankar

Abstract

Maintenance of Railway rolling stock is usually scheduled based. However, the mechanical parts, especially the wheelset may wear down prematurely due to several factors such as excessive braking and traction forces and environmental conditions. This makes the scheduled maintenance less effective and sometimes it results in derailments. This paper presents a deep learning-based technique to detect wheel conditions so that maintenance can be performed promptly and efficiently. A time series dataset of axle vibrations is generated using a simulation model of the wheelset. The dataset is then used to train and test the deep learning model. Long short-term memory (LSTM) architecture is selected for this application since it is designed to perform better for time series datasets. The results show good performance in terms of training and testing accuracy. The model is tested in different defect scenarios and the mean square error in the prediction of railway wheelset parameters is around 15%.

Publisher

Mehran University of Engineering and Technology

Subject

General Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3