Fuzzy Logic-Based Identification of Railway Wheelset Conicity Using Multiple Model Approach

Author:

Saba Erum,Kalwar Imtiaz HussainORCID,Unar Mukhtiar AliORCID,Memon Abdul Latif,Pirzada Nasrullah

Abstract

The deterioration of railway wheel tread causes unexpected breakdowns with increasing risk of operational failure leading to higher maintenance costs. The timely detection of wheel faults, such as wheel flats and false flanges, leading to varying conicity levels, helps network operators schedule maintenance before a fault occurs in reality. This study proposes a multiple model-based novel technique for the detection of railway wheelset conicity. The proposed idea is based on an indirect method to identify the actual conicity condition by analyzing the lateral acceleration of the wheelset. It in fact incorporates a combination of multiple Kalman filters, tuned on a particular conicity level, and a fuzzy logic identification system. The difference between the actual conicity and its estimated version from the filters is calculated, which provides the foundation for further processing. After preprocessing the residuals, a fuzzy inference system is used that identifies the actual conicity of the wheelset by assessing the normalized rms values from the residuals of each filter. The proposed idea was validated by simulation studies to endorse its efficacy.

Publisher

MDPI AG

Subject

Management, Monitoring, Policy and Law,Renewable Energy, Sustainability and the Environment,Geography, Planning and Development

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3