Intrinsic multi-scale analysis: a multi-variate empirical mode decomposition framework

Author:

Looney David1,Hemakom Apit1,Mandic Danilo P.1

Affiliation:

1. Department of Electrical and Electronic Engineering, Imperial College London, London SW7 2AZ, UK

Abstract

A novel multi-scale approach for quantifying both inter- and intra-component dependence of a complex system is introduced. This is achieved using empirical mode decomposition (EMD), which, unlike conventional scale-estimation methods, obtains a set of scales reflecting the underlying oscillations at the intrinsic scale level. This enables the data-driven operation of several standard data-association measures (intrinsic correlation, intrinsic sample entropy (SE), intrinsic phase synchrony) and, at the same time, preserves the physical meaning of the analysis. The utility of multi-variate extensions of EMD is highlighted, both in terms of robust scale alignment between system components, a pre-requisite for inter-component measures, and in the estimation of feature relevance. We also illuminate that the properties of EMD scales can be used to decouple amplitude and phase information, a necessary step in order to accurately quantify signal dynamics through correlation and SE analysis which are otherwise not possible. Finally, the proposed multi-scale framework is applied to detect directionality, and higher order features such as coupling and regularity, in both synthetic and biological systems.

Publisher

The Royal Society

Subject

General Physics and Astronomy,General Engineering,General Mathematics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3