Affiliation:
1. Department of Electrical and Electronic Engineering, Imperial College London, London SW7 2AZ, UK
Abstract
A novel multi-scale approach for quantifying both inter- and intra-component dependence of a complex system is introduced. This is achieved using empirical mode decomposition (EMD), which, unlike conventional scale-estimation methods, obtains a set of scales reflecting the underlying oscillations at the intrinsic scale level. This enables the data-driven operation of several standard data-association measures (intrinsic correlation, intrinsic sample entropy (SE), intrinsic phase synchrony) and, at the same time, preserves the physical meaning of the analysis. The utility of multi-variate extensions of EMD is highlighted, both in terms of robust scale alignment between system components, a pre-requisite for inter-component measures, and in the estimation of feature relevance. We also illuminate that the properties of EMD scales can be used to decouple amplitude and phase information, a necessary step in order to accurately quantify signal dynamics through correlation and SE analysis which are otherwise not possible. Finally, the proposed multi-scale framework is applied to detect directionality, and higher order features such as coupling and regularity, in both synthetic and biological systems.
Subject
General Physics and Astronomy,General Engineering,General Mathematics
Cited by
42 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献