Multi-Scale Correlation between Soil Loss and Natural Rainfall on Sloping Farmland Using the Hilbert–Huang Transform in Southwestern China

Author:

Shi Xiaopeng1,He Shuqin1ORCID,Ma Rui2,Zheng Zicheng2,Yi Haiyan1,Liang Xinlan3

Affiliation:

1. College of Forestry, Sichuan Agricultural University, Chengdu 611130, China

2. College of Resources Science, Sichuan Agricultural University, Chengdu 611130, China

3. College of Water Resources and Hydropower Engineering, Sichuan Agricultural University, Yaan 625014, China

Abstract

The Hilbert–Huang transform (HHT) has been used as a powerful tool for analyzing nonlinear and nonstationary time series. Soil loss is controlled by complicated physical processes and thus fluctuates with nonlinearity and nonstationarity over time. In order to further clarify the relationship between rainfall, surface runoff, and sediment yield, this study adopted the HHT to analyze these characteristics through multiple time scales and investigated their relationship through time-dependent intrinsic correlation (TDIC) in the time series. A six-year study (2015–2020) was conducted on sloping farmlands to explore the relationships between soil loss and rainfall in southwest China. Time series of soil loss and rainfall were identified as the relevant characteristics at different time scales based on the method of HHT. Local correlation between the soil loss and runoff was carried out by the method of TDIC. The original time series of the rainfall, runoff, and soil loss were decomposed into eight intrinsic mode functions (IMFs) and a residue by ensemble empirical mode decomposition (EEMD). The residue indicated that the rainfall and runoff increased and then decreased during the maize-growing season from 2015 to 2020, whereas the soil loss gradually decreased. IMF1 and IMF2 accounted for nearly 80% of the temporal variations in rainfall, runoff, and soil loss, indicating that the variables varied the most at short time scales. The TDIC analysis showed that strong and positive correlations between the soil loss, rainfall, and runoff prevailed over the entire time domain at the scales of IMF1 and IMF2, indicating the rapid response of the soil loss to rainfall and runoff at short time scales. Time-varying correlations were observed at the IMF3–IMF5 scales. At the IMF7 scale, an evident switchover in the nature of the correlation was identified during the years 2018 and 2019; this could be related to a sudden rainstorm under low vegetation coverage conditions. The EEMD-based TDIC tool is an effective means to clarify the relationship between soil loss, rainfall, and runoff. Our results provide a better understanding of the relationship between soil loss and rainfall varied with time at multiple time scales. Short-term heavy rainfall and rapid surface runoff are the important factors causing serious soil and water loss on a short time scale in a mountainous region with yellow soil, which is of great significance for the construction of a regional soil erosion prediction model.

Funder

National Natural Science Foundation

Sichuan Key Research and Development Program

Publisher

MDPI AG

Subject

Agronomy and Crop Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3