Chaos and physiology: deterministic chaos in excitable cell assemblies

Author:

Elbert T.1,Ray W. J.1,Kowalik Z. J.1,Skinner J. E.1,Graf K. E.1,Birbaumer N.1

Affiliation:

1. Institute for Experimental Audiology, University of Munster,Germany.

Abstract

In this review we examined the emerging science of deterministic chaos (nonlinear systems theory) and its application to selected physiological systems. Although many of the popular images of fractals represent fascination and beauty that by analogy corresponds to nature as we see it, the question remains as to its ultimate meaning for physiological processes. It was our intent to help clarify this somewhat popular, somewhat obscure area of nonlinear dynamics in the context of an ever-changing procedural base. We examined not only the basic concepts of chaos, but also its applications ranging from observations in single cells to the complexity of the EEG. We have not suggested that nonlinear dynamics will answer all of our questions; however, we did attempt to illustrate ways in which this approach may help us to answer new questions and to rearticulate old ones. Chaos is revolutionary in that the overall approach requires us to adopt a different frame of reference which, at times, may move us away from previous concerns and methods of data analysis. In sections I-IV, we summarized the nonlinear dynamics approach and described its application to physiology and neural systems. First, we presented a general overview of the application of nonlinear dynamical techniques to neural systems. We discussed the manner in which even apparently simple deterministic systems can behave in an unpredictable manner. Second, we described the principles of nonlinear dynamical systems including the derived analytical techniques. We now see a variety of procedures for delineating whether frenetic chaotic behavior results from a nonlinear dynamical system with a few degrees of freedom, or whether it is caused by an infinite number of variables, i.e., noise. Third, we approached the applications of nonlinear procedures to the cardiovascular systems and to the neurosciences. In terms of time series, we described initial studies which applied the now "traditional" measures of dimensionality (e.g., based on the algorithm by Grassberger and Procaccia) and information change (e.g., Lyapunov exponents). Examples include our own work and that of Pritchard et al., demonstrating that the dynamics of neural mass activity reflect psychopathological states. Today, however, the trend has expanded to include the use of surrogate data and statistical null hypotheses testing to examine whether a given time series can be considered different from that of white or colored noise (cf. Ref. 262). One of the most important potential applications is that of quantifying changes in nonlinear dynamics to predict future states of the system.(ABSTRACT TRUNCATED AT 400 WORDS)

Publisher

American Physiological Society

Subject

Physiology (medical),Molecular Biology,Physiology,General Medicine

Cited by 522 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3