On the fixation probability of superstars

Author:

Díaz Josep1,Goldberg Leslie Ann23,Mertzios George B.4,Richerby David23,Serna Maria1,Spirakis Paul G.25

Affiliation:

1. Departament de Llenguatges i Sistemes Informàtics, Universitat Politècnica de Catalunya, Barcelona, Spain

2. Department of Computer Science, University of Liverpool, Liverpool, UK

3. Department of Computer Science, University of Oxford, Oxford, UK

4. School of Engineering and Computing Sciences, Durham University, Durham, UK

5. Department of Computer Engineering and Informatics, University of Patras, Patras, Greece

Abstract

The Moran process models the spread of genetic mutations through populations. A mutant with relative fitness r is introduced and the system evolves, either reaching fixation (an all-mutant population) or extinction (no mutants). In a widely cited paper, Lieberman et al. (2005 Evolutionary dynamics on graphs. Nature 433 , 312–316) generalize the model to populations on the vertices of graphs. They describe a class of graphs (‘superstars’), with a parameter k and state that the fixation probability tends to 1− r k as the graphs get larger: we show that this is untrue as stated. Specifically, for k =5, we show that the fixation probability (in the limit, as graphs get larger) cannot exceed 1−1/ j ( r ), where j ( r )= Θ ( r 4 ), contrary to the claimed result. Our proof is fully rigorous, though we use a computer algebra package to invert a 31×31 symbolic matrix. We do believe the qualitative claim of Lieberman et al. —that superstar fixation probability tends to 1 as k increases—and that it can probably be proved similarly to their sketch. We were able to run larger simulations than the ones they presented. Simulations on graphs of around 40 000 vertices do not support their claim but these graphs might be too small to exhibit the limiting behaviour.

Publisher

The Royal Society

Subject

General Physics and Astronomy,General Engineering,General Mathematics

Cited by 20 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Fixation times on directed graphs;PLOS Computational Biology;2024-07-18

2. The speed of neutral evolution on graphs;Journal of The Royal Society Interface;2024-05

3. A survey of the modified Moran process and evolutionary graph theory;Computer Science Review;2021-02

4. Wald’s martingale and the conditional distributions of absorption time in the Moran process;Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences;2020-09

5. Wald’s martingale and the Moran process;2020-02-24

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3