Affiliation:
1. National Institute of Genetics, Mishima, Japan and Center for Demographic and Population Genetics, University of Texas at Houston, Texas 77025
Abstract
ABSTRACT
A Markov process (chain) of gene frequency change is derived for a geographically-structured model of a population. The population consists of colonies which are connected by migration. Selection operates in each colony independently. It is shown that there exists a stochastic clock that transforms the originally complicated process of gene frequency change to a random walk which is independent of the geographical structure of the population. The time parameter is a local random time that is dependent on the sample path. In fact, if the alleles are selectively neutral, the time parameter is exactly equal to the sum of the average local genetic variation appearing in the population, and otherwise they are approximately equal. The Kolmogorov forward and backward equations of the process are obtained. As a limit of large population size, a diffusion process is derived. The transition probabilities of the Markov chain and of the diffusion process are obtained explicitly. Certain quantities of biological interest are shown to be independent of the population structure. The quantities are the fixation probability of a mutant, the sum of the average local genetic variation and the variation summed over the generations in which the gene frequency in the whole population assumes a specified value.
Publisher
Oxford University Press (OUP)
Cited by
14 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献