Affiliation:
1. International Centre for Neuromorphic Engineering, MARCS Institute, Western Sydney University, Werrington, NSW 2747, Australia
Abstract
Many models of evolution are stochastic processes, where some quantity of interest fluctuates randomly in time. One classic example is the Moranbirth–death process, where that quantity is the number of mutants in a population. In such processes, we are often interested in their absorption (i.e. fixation) probabilities and the conditional distributions of absorption time. Those conditional time distributions can be very difficult to calculate, even for relatively simple processes like the Moran birth–death model. Instead of considering the time to absorption, we consider a closely related quantity: the number of mutant population size changes before absorption. We use Wald’s martingale to obtain the conditional characteristic functions of that quantity in the Moran process. Our expressions are novel, analytical and exact, and their parameter dependence is explicit. We use our results to approximate the conditional characteristic functions of absorption time. We state the conditions under which that approximation is particularly accurate. Martingales are an elegant framework to solve principal problems of evolutionary stochastic processes. They do not require us to evaluate recursion relations, so when they are applicable, we can quickly and tractably obtain absorption probabilities and times of evolutionary models.
Subject
General Physics and Astronomy,General Engineering,General Mathematics
Cited by
10 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献