Abstract
Sound extrapolation methods are often used to compute acoustic far-field directivities using near-field flow data in aeroacoustics applications. The results may be erroneous if the volume integrals are neglected (to save computational cost), while non-acoustic fluctuations are collected on the integration surfaces. In this work, we develop a new sound extrapolation method based on an acoustic analogy using Taylor’s hypothesis (Taylor 1938
Proc. R. Soc. Lon. A
164
, 476–490. (
doi:10.1098/rspa.1938.0032
)). Typically, a convection operator is used to filter out the acoustically inefficient components in the turbulent flows, and an acoustics dominant indirect variable
D
c
p
′
is solved. The sound pressure
p
′ at the far field is computed from
D
c
p
′
based on the asymptotic properties of the Green’s function. Validations results for benchmark problems with well-defined sources match well with the exact solutions. For aeroacoustics applications: the sound predictions by the aerofoil–gust interaction are close to those by an earlier method specially developed to remove the effect of vortical fluctuations (Zhong & Zhang 2017
J. Fluid Mech.
820
, 424–450. (
doi:10.1017/jfm.2017.219
)); for the case of vortex shedding noise from a cylinder, the off-body predictions by the proposed method match well with the on-body Ffowcs-Williams and Hawkings result; different integration surfaces yield close predictions (of both spectra and far-field directivities) for a co-flowing jet case using an established direct numerical simulation database. The results suggest that the method may be a potential candidate for sound projection in aeroacoustics applications.
Subject
General Physics and Astronomy,General Engineering,General Mathematics
Cited by
24 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献