Surface Integral Methods in Computational Aeroacoustics—From the (CFD) Near-Field to the (Acoustic) Far-Field

Author:

Lyrintzis Anastasios S.1

Affiliation:

1. School of Aeronautics and Astronautics, Purdue University, W. Lafayette, IN 47907-2023

Abstract

A review of recent advances in the use of surface integral methods in Computational AeroAcoustics (CAA) for the extension of near-field CFD results to the acoustic far-field is given. These integral formulations (i.e. Kirchhoff's method, permeable (porous) surface Ffowcs-Williams Hawkings (FW-H) equation) allow the radiating sound to be evaluated based on quantities on an arbitrary control surface if the wave equation is assumed outside. Thus only surface integrals are needed for the calculation of the far-field sound, instead of the volume integrals required by the traditional acoustic analogy method (i.e. Lighthill, rigid body FW-H equation). A numerical CFD method is used for the evaluation of the flow-field solution in the near field and thus on the control surface. Diffusion and dispersion errors associated with wave propagation in the far-field are avoided. The surface integrals and the first derivatives needed can be easily evaluated from the near-field CFD data. Both methods can be extended in order to include refraction effects outside the control surface. The methods have been applied to helicopter noise, jet noise, propeller noise, ducted fan noise, etc. A simple set of portable Kirchhoff/FW-H subroutines can be developed to calculate the far-field noise from inputs supplied by any aerodynamic near/mid-field CFD code.

Publisher

SAGE Publications

Subject

Acoustics and Ultrasonics,Aerospace Engineering

Cited by 232 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3