Frequency-domain quadrupole correction for the permeable-surface Ffowcs Williams and Hawkings integration

Author:

Zhou Zhiteng12ORCID,Liu Yi12,Wang Shizhao12ORCID

Affiliation:

1. State Key Laboratory of Nonlinear Mechanics, Institute of Mechanics, Chinese Academy of Sciences 1 , Beijing 100190, China

2. School of Engineering Sciences, University of Chinese Academy of Sciences 2 , Beijing 100049, China

Abstract

The permeable-surface Ffowcs Williams and Hawkings (FW–H) integration for computing the far-field sound has the advantage of encapsulating the sources and nonlinear propagation inside the integral surface. However, it suffers from spurious sound when the volume integral for quadrupole term outside the permeable surface is conventionally ignored. The spurious sound is often suppressed by using two distinct approaches, which modifies the FW–H integration and acoustic variables/sources, respectively. This work clarifies the connection between the two approaches by analyzing the integral of the quadrupole sources. We show that the modification of the acoustic sources can be reformulated as a modification of the FW–H integration, which means that the two distinct approaches are interconvertible. A new quadrupole correction model for the FW–H integration is proposed by delicately modifying the acoustic sources. The modified acoustic sources consist of the filtered Lighthill stress tensor, where a convection operator is used to filter out the acoustically inefficient components. The proposed quadrupole correction model is consistent with the previous work on the modification of the FW–H integration under special conditions with the uniform convection velocity. The proposed model is validated by computing the sound pressure generated by laminar and turbulent flows over bluff bodies. It is found that the sensitivity of the acoustic pressure to the FW–H surface's position is suppressed and the accuracy of the predicted sound is improved. The results suggest that the modification of acoustic variables/sources can be a powerful method to construct new quadrupole correction models for the permeable FW–H integration.

Funder

National Natural Science Foundation of China

Chinese Academy of Sciences

Publisher

AIP Publishing

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3