Functional space expansion driven by transitions between energetically advantageous traits in the deep sea

Author:

Bryant S. River D.12ORCID,McClain Craig R.12ORCID

Affiliation:

1. Louisiana Universities Marine Consortium, 8124 Highway 56, Chauvin, LA 70344, USA

2. Department of Biology, University of Louisiana at Lafayette, 410 E. St. Mary Blvd., Billeaud Hall, Lafayette, LA 70503, USA

Abstract

Climate change is shifting community structure and biodiversity on a global scale, in part due to alterations of chemical and thermal energy availability. These changes may impact ecosystem functioning through their influence on functional diversity. We investigate patterns of functional diversity, functional niches, and functional traits in bivalve communities across the energetic gradient of the deep Atlantic Ocean. We use the functional traits feeding type, tiering, and motility level to define the axes of functional space and the unique combinations of these traits as functional niches. We find that increased energy affords new species, added into functional space through niche expansion rather than niche packing. Underlying this pattern are complex dynamics of gains and losses of individual functional niches, with few adapted to the low- and high-energy extremes, and most occurring at intermediate energy. Adaptive qualities of specific traits are evidenced by those functional niches occurring at energetic extremes. Tradeoffs between these traits within the intermediate energy zone underlie an increased coexistence of functional niches, which in turn drives a unimodal pattern of functional niches and expansion of used functional space. This work suggests that energy-limited communities may be especially vulnerable to continued shifts in food availability through the Anthropocene.

Funder

University of Louisiana at Lafayette

Publisher

The Royal Society

Subject

General Agricultural and Biological Sciences,General Environmental Science,General Immunology and Microbiology,General Biochemistry, Genetics and Molecular Biology,General Medicine

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3