Panoramic spatial vision in the bay scallop Argopecten irradians

Author:

Chappell Daniel R.1ORCID,Horan Tyler M.1,Speiser Daniel I.1ORCID

Affiliation:

1. Department of Biological Sciences, University of South Carolina, 715 Sumter Street, Columbia, SC 29208, USA

Abstract

We have a growing understanding of the light-sensing organs and light-influenced behaviours of animals with distributed visual systems, but we have yet to learn how these animals convert visual input into behavioural output. It has been suggested they consolidate visual information early in their sensory-motor pathways, resulting in them being able to detect visual cues (spatial resolution) without being able to locate them (spatial vision). To explore how an animal with dozens of eyes processes visual information, we analysed the responses of the bay scallop Argopecten irradians to both static and rotating visual stimuli. We found A. irradians distinguish between static visual stimuli in different locations by directing their sensory tentacles towards them and were more likely to point their extended tentacles towards larger visual stimuli. We also found that scallops track rotating stimuli with individual tentacles and with rotating waves of tentacle extension. Our results show, to our knowledge for the first time that scallops have both spatial resolution and spatial vision, indicating their sensory-motor circuits include neural representations of their visual surroundings. Exploring a wide range of animals with distributed visual systems will help us learn the different ways non-cephalized animals convert sensory input into behavioural output.

Funder

Division of Integrative Organismal Systems

University of South Carolina

South Carolina Honors College

Publisher

The Royal Society

Subject

General Agricultural and Biological Sciences,General Environmental Science,General Immunology and Microbiology,General Biochemistry, Genetics and Molecular Biology,General Medicine

Cited by 10 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3