‘Distributed’ vision and the architecture of animal visual systems

Author:

Sumner-Rooney Lauren1ORCID

Affiliation:

1. Museum für Naturkunde, Leibniz Institute for Biodiversity and Evolution , Invalidenstrasse 43, 10115 Berlin , Germany

Abstract

ABSTRACT More than a century of research, of which JEB has published a substantial selection, has highlighted the rich diversity of animal eyes. From these studies have emerged numerous examples of visual systems that depart from our own familiar blueprint, a single pair of lateral cephalic eyes. It is now clear that such departures are common, widespread and highly diverse, reflecting a variety of different eye types, visual abilities and architectures. Many of these examples have been described as ‘distributed’ visual systems, but this includes several fundamentally different systems. Here, I re-examine this term, suggest a new framework within which to evaluate visual system distribution in both spatial and functional senses, and propose a roadmap for future work. The various architectures covered by this term reflect three broad strategies that offer different opportunities and require different approaches for study: the duplication of functionally identical eyes, the expression of multiple, functionally distinct eye types in parallel and the use of dispersed photoreceptors to mediate visual behaviour without eyes. Within this context, I explore some of the possible implications of visual system architecture for how visual information is collected and integrated, which has remained conceptually challenging in systems with a large degree of spatial and/or functional distribution. I highlight two areas that should be prioritised in future investigations: the whole-organism approach to behaviour and signal integration, and the evolution of visual system architecture across Metazoa. Recent advances have been made in both areas, through well-designed ethological experiments and the deployment of molecular tools.

Funder

Deutsche Forschungsgemeinschaft

Publisher

The Company of Biologists

Subject

Insect Science,Molecular Biology,Animal Science and Zoology,Aquatic Science,Physiology,Ecology, Evolution, Behavior and Systematics

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3