Polarization sensitivity and decentralized visual processing in an animal with a distributed visual system

Author:

Chappell Daniel R.1ORCID,Speiser Daniel I.1ORCID

Affiliation:

1. University of South Carolina Department of Biological Sciences , , 715 Sumter Street, Columbia, SC 29208 , USA

Abstract

ABSTRACT The marine mollusc Acanthopleura granulata (Mollusca; Polyplacophora) has a distributed visual array composed of hundreds of small image-forming eyes embedded within its eight dorsal shell plates. As in other animals with distributed visual systems, we still have a poor understanding of the visual capabilities of A. granulata and we have yet to learn where and how it processes visual information. Using behavioral trials involving isoluminant looming visual stimuli, we found that A. granulata demonstrates spatial vision with an angular resolution of 6 deg. We also found that A. granulata responds to looming stimuli defined by contrasting angles of linear polarization. To learn where and how A. granulata processes visual information, we traced optic nerves using fluorescent lipophilic dyes. We found that the optic nerves innervate the underlying lateral neuropil, a neural tissue layer that circumnavigates the body. Adjacent optic nerves innervate the lateral neuropil with highly overlapping arborizations, suggesting it is the site of an integrated visuotopic map. Using immunohistochemistry, we found that the lateral neuropil of A. granulata is subdivided into two separate layers. In comparison, we found that a chiton with eyespots (Chiton tuberculatus) and two eyeless chitons (Ischnochiton papillosus and Chaetopleura apiculata) have lateral neuropil that is a singular circular layer without subdivision, findings consistent with previous work on chiton neuroanatomy. Overall, our results suggest that A. granulata effectuates its visually mediated behaviors using a unique processing scheme: it extracts spatial and polarization information using a distributed visual system, and then integrates and processes that information using decentralized neural circuits.

Funder

National Science Foundation

University of South Carolina

Society for Integrative and Comparative Biology

Publisher

The Company of Biologists

Subject

Insect Science,Molecular Biology,Animal Science and Zoology,Aquatic Science,Physiology,Ecology, Evolution, Behavior and Systematics

Reference50 articles.

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3