The metabolic pace of life histories across fishes

Author:

Wong Serena1ORCID,Bigman Jennifer S.1ORCID,Dulvy Nicholas K.1ORCID

Affiliation:

1. Earth to Ocean Research Group, Department of Biological Sciences, Simon Fraser University, Burnaby, Canada

Abstract

All life acquires energy through metabolic processes and that energy is subsequently allocated to life-sustaining functions such as survival, growth and reproduction. Thus, it has long been assumed that metabolic rate is related to the life history of an organism. Indeed, metabolic rate is commonly believed to set the pace of life by determining where an organism is situated along a fast–slow life-history continuum. However, empirical evidence of a direct interspecific relationship between metabolic rate and life histories is lacking, especially for ectothermic organisms. Here, we ask whether three life-history traits—maximum body mass, generation length and growth performance—explain variation in resting metabolic rate (RMR) across fishes. We found that growth performance, which accounts for the trade-off between growth rate and maximum body size, explained variation in RMR, yet maximum body mass and generation length did not. Our results suggest that measures of life history that encompass trade-offs between life-history traits, rather than traits in isolation, explain variation in RMR across fishes. Ultimately, understanding the relationship between metabolic rate and life history is crucial to metabolic ecology and has the potential to improve prediction of the ecological risk of data-poor species.

Funder

Canada Research Chairs

Natural Sciences and Engineering Research Council of Canada

Publisher

The Royal Society

Subject

General Agricultural and Biological Sciences,General Environmental Science,General Immunology and Microbiology,General Biochemistry, Genetics and Molecular Biology,General Medicine

Reference50 articles.

1. Clarke A. 2017 Principles of thermal ecology: temperature, energy and life, pp. 267-280. Oxford, UK: Oxford University Press.

2. Reynolds JD. 2003 Life histories and extinction risk. In Macroecology (eds TM Blackburn, KJ Gaston), pp. 195-217. Oxford, UK: Blackwell Publishing.

3. Life History

4. TOWARD A METABOLIC THEORY OF ECOLOGY

5. Effects of size and temperature on developmental time

Cited by 18 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3