Brain energy metabolism as an underlying basis of slow and fast cognitive phenotypes in honeybees

Author:

Tait Catherine1,Chicco Adam J.2,Naug Dhruba1ORCID

Affiliation:

1. Colorado State University 1 Department of Biology , , Fort Collins , CO 80523, USA

2. Colorado State University 2 Department of Biomedical Sciences , , Fort Collins , CO 80523, USA

Abstract

ABSTRACT In the context of slow–fast behavioral variation, fast individuals are hypothesized to be those who prioritize speed over accuracy while slow individuals are those which do the opposite. Since energy metabolism is a critical component of neural and cognitive functioning, this predicts such differences in cognitive style to be reflected at the level of the brain. We tested this idea in honeybees by first classifying individuals into slow and fast cognitive phenotypes based on a learning assay and then measuring their brain respiration with high-resolution respirometry. Our results broadly show that inter-individual differences in cognition are reflected in differences in brain mass and accompanying energy use at the level of the brain and the whole animal. Larger brains had lower mass-specific energy usage and bees with larger brains had a higher metabolic rate. These differences in brain respiration and brain mass were, in turn, associated with cognitive differences, such that bees with larger brains were fast cognitive phenotypes whereas those with smaller brains were slow cognitive phenotypes. We discuss these results in the context of the role of energy in brain functioning and slow–fast decision making and speed accuracy trade-off.

Funder

Foundation for Food and Agricultural Research

National Science Foundation

Publisher

The Company of Biologists

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Some honeybees make fast decisions, but at a cost;Journal of Experimental Biology;2024-09-01

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3