Unlocking the power of fatty acids as dietary tracers and metabolic signals in fishes and aquatic invertebrates

Author:

Jardine Timothy D.12ORCID,Galloway Aaron W. E.3ORCID,Kainz Martin J.4ORCID

Affiliation:

1. School of Environment and Sustainability, University of Saskatchewan, Saskatoon, SK, Canada, S7N 5C8

2. Canadian Rivers Institute, Fredericton, NB, Canada, E3B 5A3

3. Oregon Institute of Marine Biology, University of Oregon, Charleston, OR 97420, USA

4. Inter-university Center for Aquatic Ecosystems Research WasserCluster – Biologische Station Lunz, Lunz am See, Austria

Abstract

Determining the transfer and transformation of organic matter in food webs is a fundamental challenge that has implications for sustainable management of ecosystems. Fatty acids (FA) offer a potential approach for resolving complex diet mixtures of organisms because they provide a suite of molecular tracers. Yet, uncertainties in the degree of their biochemical modification by consumers, due to selective retention or metabolism, have limited their application. Here, we consolidated 316 controlled feeding studies of aquatic ectotherms (fishes and invertebrates) involving 1404 species–diet combinations to assess the degree of trophic modification of FA in muscle tissue. We found a high degree of variability within and among taxa in the %FA in consumer muscle tissue versus %FA in diet regression equations. Most saturated FA had weak relationships with the diet ( r 2 < 0.30) and shallow slopes ( m < 0.30), suggesting a lack of retention in muscle when fed in increasing amounts. Contrarily, several essential FA, including linoleic (18:2n-6) and α-linolenic acid (18:3n-3), exhibited significant relationships with the diet ( m > 0.35, r 2 > 0.50), suggesting supply limitations and selective retention in muscle by consumers. For all FA, relationships strengthened with increasing taxonomic specificity. We also demonstrated the utility of new correction equations by calculating the potential contributions of approximately 20 prey items to the diet of selected species of generalist fishes using a FA mixing model. Our analyses further reveal how a broad range of fishes and invertebrates convert or store these compounds in muscle tissue to meet physiological needs and point to their power in resolving complex diets in aquatic food webs. This article is part of the theme issue ‘The next horizons for lipids as ‘trophic biomarkers’: evidence and significance of consumer modification of dietary fatty acids’.

Publisher

The Royal Society

Subject

General Agricultural and Biological Sciences,General Biochemistry, Genetics and Molecular Biology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3