Symmetry and complexity in object-centric deep active inference models

Author:

Ferraro Stefano1ORCID,Van de Maele Toon1,Verbelen Tim1,Dhoedt Bart1

Affiliation:

1. IDLab, Department of Information Technology, Ghent University–imec, Ghent, Belgium

Abstract

Humans perceive and interact with hundreds of objects every day. In doing so, they need to employ mental models of these objects and often exploit symmetries in the object’s shape and appearance in order to learn generalizable and transferable skills. Active inference is a first principles approach to understanding and modelling sentient agents. It states that agents entertain a generative model of their environment, and learn and act by minimizing an upper bound on their surprisal, i.e. their free energy. The free energy decomposes into an accuracy and complexity term, meaning that agents favour the least complex model that can accurately explain their sensory observations. In this paper, we investigate how inherent symmetries of particular objects also emerge as symmetries in the latent state space of the generative model learnt under deep active inference. In particular, we focus on object-centric representations, which are trained from pixels to predict novel object views as the agent moves its viewpoint. First, we investigate the relation between model complexity and symmetry exploitation in the state space. Second, we do a principal component analysis to demonstrate how the model encodes the principal axis of symmetry of the object in the latent space. Finally, we also demonstrate how more symmetrical representations can be exploited for better generalization in the context of manipulation.

Funder

Ai Flanders

Publisher

The Royal Society

Subject

Biomedical Engineering,Biomaterials,Biochemistry,Bioengineering,Biophysics,Biotechnology

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3