Finite plane strain

Author:

Abstract

A general theory of plane strain, valid for large elastic deformations of isotropic materials, is developed using a general system of co-ordinates. No restriction is imposed upon the form of the strain-energy function in the formulation of the basic theory, apart from that arising naturally from the assumption of plane strain. In applications, attention is confined to incompressible materials, and the general method of approach is illustrated by the examination of a number of problems which are capable of exact solution. These include the flexure of a cuboid, and of an initially curved cuboid, and a generalization of the shear problem. A method of successive approximation is then evolved, suitable for application to problems for which exact solutions are not readily obtainable. Attention is again confined to incompressible materials, and the approximation process is terminated when the second-order terms have been obtained. In considering problems in plane strain, complex variable techniques are employed and the stress and displacement functions are expressed in terms of complex potential functions. In dealing with finite elastic deformations, a complex co-ordinate system may be chosen which is related either to points in the deformed body or to points in the undeformed body, and in the present paper both methods are developed. The theory is applied to obtain solutions for an infinite body which contains either a circular hole or a circular rigid inclusion, and which is under a uniform tension at infinity.

Publisher

The Royal Society

Subject

General Engineering

Cited by 46 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. On Poro-hyperelastic Torsion;International Journal of Engineering Science;2024-01

2. Nonlinear extension of the Kolosov-Muskhelishvili stress function formalism;Physical Review E;2023-04-26

3. On Spencer’s displacement function approach for problems in second-order elasticity theory;Mathematics and Mechanics of Solids;2022-06-10

4. Semi-implicit numerical simulations of geometrically nonlinear beam, plate, and shell dynamical systems;International Journal for Computational Methods in Engineering Science and Mechanics;2016-10-14

5. Semi-Implicit Numerical Simulations of Nonlinear Dynamics of Beams, Plates, and Shells;AIAA Modeling and Simulation Technologies Conference;2015-06-18

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3