On Spencer’s displacement function approach for problems in second-order elasticity theory

Author:

Selvadurai APS1ORCID

Affiliation:

1. Department of Civil Engineering and Applied Mechanics, McGill University, Montreal, QC, Canada

Abstract

The paper describes the displacement function approach first proposed by AJM Spencer for the formulation and solution of problems in second-order elasticity theory. The displacement function approach for the second-order problem results in a single inhomogeneous partial differential equation of the form [Formula: see text], where [Formula: see text] is Stokes’ operator and [Formula: see text] depends only on the first-order or the classical elasticity solution. The second-order isotropic stress [Formula: see text] is governed by an inhomogeneous partial differential equation of the form [Formula: see text], where [Formula: see text] is Laplace’s operator and [Formula: see text] depends only on the first-order or classical elasticity solution. The introduction of the displacement function enables the evaluation of the second-order displacement field purely through its derivatives and avoids the introduction of arbitrary rigid body terms normally associated with formulations where the strains need to be integrated. In principle, the displacement function approach can be systematically applied to examine higher-order effects, but such formulations entail considerable algebraic manipulations, which can be facilitated through the use of computer-aided symbolic mathematical operations. The paper describes the advances that have been made in the application of Spencer’s fundamental contribution and applies it to the solution of Kelvin’s concentrated force, Love’s doublet, and Boussinesq’s problems in second-order elasticity theory.

Funder

Natural Sciences and Engineering Research Council of Canada

Publisher

SAGE Publications

Subject

Mechanics of Materials,General Materials Science,General Mathematics

Reference164 articles.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3