Finite extension and torsion of cylinders

Author:

Abstract

The theory of finite elastic deformations of an isotropic body, in which a completely general strainenergy function is used, is applied to the problem of a small twist superposed upon a finite extension of a cylinder which has a constant cross-section. The law which relates the force necessary to produce the large extension, with the torsional modulus for the small torsion superposed on that extension, is given by a simple general formula. When the material is incompressible the corresponding law is independent of the particular form of the strain-energy function which applies to the material. When the cylinder is not a circular cylinder or a circular cylindrical tube the twisting couple vanishes for a certain value of the extension ratio, this value being independent of the particular form of the strain-energy function when the material is incompressible. The problems of a small twist superposed upon a hydrostatic pressure, or upon a combined hydrostatic pressure and tension, are also solved. Attention is then confined to isotropic incompressible rubber-like materials using a strain-energy function suggested by Mooney, and the second-order effects which accompany the torsion of cylinders of constant cross-sections are examined. The problem is reduced to the determination of two functions of a complex variable which are regular in the cross-section of the cylinders and which satisfy a suitable boundary condition on the boundary of the cross-section. The solution is expressed as an integral equation and applications are made to cylinders with various cross-sections. This theory is then generalized to include the second-order effects in torsion superposed upon a finite extension of the cylinders. Complex variables are used throughout this part of the paper, and the problem is reduced to the determination of four canonical functions of a complex variable, these functions being the solutions of certain integral equations. An explicit solution is given for an elliptical cylinder but without using the integral equations.

Publisher

The Royal Society

Subject

General Engineering

Reference59 articles.

1. Biot M. A. 1939 a Phil.

2. Biot M. A. 1939 £ M ag.27 468.

3. J.Appl. Phys. 10 860.

4. Z. angew;Biot M. A.;Math. Mech.,1940

Cited by 56 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3