Towards blood flow in the virtual human: efficient self-coupling of HemeLB

Author:

McCullough J. W. S.1ORCID,Richardson R. A.1ORCID,Patronis A.12,Halver R.2,Marshall R.3,Ruefenacht M.3,Wylie B. J. N.2,Odaker T.4,Wiedemann M.4ORCID,Lloyd B.5,Neufeld E.5,Sutmann G.26,Skjellum A.3,Kranzlmüller D.4,Coveney P. V.17ORCID

Affiliation:

1. Centre for Computational Science, Department of Chemistry, University College London, London, UK

2. Jülich Supercomputing Centre, Forschungszentrum Jülich, Jülich, Germany

3. SimCenter, University of Tennessee at Chattanooga, Chattanooga, TN, USA

4. Leibniz Supercomputing Centre, Leibniz-Rechenzentrum (LRZ), Garching, Germany

5. Foundation for Research on Information Technologies in Society (IT'IS), Zurich, Switzerland

6. ICAMS, Ruhr-University Bochum, Bochum, Germany

7. Informatics Institute, University of Amsterdam, Amsterdam, The Netherlands

Abstract

Many scientific and medical researchers are working towards the creation of a virtual human—a personalized digital copy of an individual—that will assist in a patient’s diagnosis, treatment and recovery. The complex nature of living systems means that the development of this remains a major challenge. We describe progress in enabling the HemeLB lattice Boltzmann code to simulate 3D macroscopic blood flow on a full human scale. Significant developments in memory management and load balancing allow near linear scaling performance of the code on hundreds of thousands of computer cores. Integral to the construction of a virtual human, we also outline the implementation of a self-coupling strategy for HemeLB. This allows simultaneous simulation of arterial and venous vascular trees based on human-specific geometries.

Funder

Engineering and Physical Sciences Research Council

Gauss Centre for Supercomputing

ARCHER UK National Supercomputing Service

Medical Research Council

UCL Provost

National Science Foundation

European Commission

Publisher

The Royal Society

Subject

Biomedical Engineering,Biomaterials,Biochemistry,Bioengineering,Biophysics,Biotechnology

Reference46 articles.

1. Systems biology and the virtual physiological human

2. A vision and strategy for the virtual physiological human in 2010 and beyond

3. A vision and strategy for the virtual physiological human: 2012 update

4. Chase JG Desaive T Preiser J-C. 2016 Virtual patients and virtual cohorts: a new way to think about the design and implementation of personalized ICU treatments. In Annual Update in Intensive Care and Emergency Medicine (ed. JL Vincent) pp. 435–448. Cham Switzerland: Springer. (doi:10.1007/978-3-319-27349-5_35)

5. Computational simulation of blood flow in human systemic circulation incorporating an external force field

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3