Combined electromechanically driven pulsating flow of nonlinear viscoelastic fluids in narrow confinements

Author:

Kumar Vishal1ORCID,Mukherjee Joydeb2,Sinha Sudipta Kumar1ORCID,Ghosh Uddipta3ORCID

Affiliation:

1. Department of Chemistry, Indian Institute of Technology Ropar, Rupnagar, Punjab 140 001, India

2. Department of Chemical Engineering, Institute of Chemical Technology, Mumbai 400019, India

3. Discipline of Mechanical Engineering, Indian Institute of Technology Gandhinagar, Palaj, Gujarat 382355, India

Abstract

Controlled microscale transport is at the core of many scientific and technological advancements, including medical diagnostics, separation of biomolecules, etc., and often involves complex fluids. One of the challenges in this regard is to actuate flows at small scales in an energy efficient manner, given the strong viscous forces opposing fluid motion. We try to address this issue here by probing a combined time-periodic pressure and electrokinetically driven flow of a viscoelastic fluid obeying the simplified linear Phan-Thien–Tanner model, using numerical as well as asymptotic tools, in view of the fact that oscillatory fields are less energy intensive. We establish that the interplay between oscillatory electrical and mechanical forces can lead to complex temporal mass flow rate variations with short-term bursts and peaks in the flow rate. We further demonstrate that an oscillatory pressure gradient or an electric field, in tandem with another steady actuating force can indeed change the net throughput significantly—a paradigm that is not realized in Newtonian or other simpler polymeric liquids. Our results reveal that the extent of augmentation in the flow rate strongly depends on the frequency of the imposed actuating forces along with their waveforms. We also evaluate the streaming potential resulting from an oscillatory pressure-driven flow and illustrate that akin to the volume throughput, the streaming potential also shows complex temporal variations, while its time average gets augmented in the presence of a time-periodic pressure gradient in a nonlinear viscoelastic medium.

Funder

Science and Engineering Research Board

University Grants Commission

DST Inspire Fellowship

Publisher

The Royal Society

Subject

Biomedical Engineering,Biochemistry,Biomaterials,Bioengineering,Biophysics,Biotechnology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3