Mass transport in oscillatory electroosmotic viscoelectric flow in a hydrophobic microchannel with steric effect

Author:

Baños RORCID,Arcos JORCID,Bautista O,Méndez F

Abstract

Abstract We conduct a numerical study of viscoelectric and steric effects on an oscillatory electroosmotic flow (OEOF) and their impact on the mass transport of a passive solute through a hydrophobic microchannel. In many applications of electroosmosis, zeta potentials as high as 100–200 mV can be found; in such a situation, the Debye–Hückel approximation is no longer valid, and the steric effect must be considered because the crowding of finite-sized ions close to the microchannel walls. In addition to the previous effect, the local viscosity can be increased due to the viscoelectric effect for strong electric potentials induced in the electric double layer. Earlier works have studied the mass transfer caused by an OEOF; however, the combined effects’ influence has not been considered. This research suggests that under an appropriate combination of the viscoelectric and steric effects, together with the microchannel hydrophobicity, the mass transport can be controlled and notably enhanced compared with the case where such effects are disregarded. An interesting behavior occurs for relatively high values of the steric factor ν, where there is a linear dependence between the mass transport Q ˜ and the viscoelectric factor f ˜ ; in contrast, for low values of ν, the relationship Q ˜ f ˜ is non-linear.

Funder

Secretaría de Investigación y Posgrado, Instituto Politécnico Nacional

Publisher

IOP Publishing

Subject

Fluid Flow and Transfer Processes,General Physics and Astronomy,Mechanical Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3