The energy of muscle contraction. IV. Greater mass of larger muscles decreases contraction efficiency

Author:

Ross Stephanie A.1ORCID,Wakeling James M.1

Affiliation:

1. Department of Biomedical Physiology and Kinesiology, Simon Fraser University, 8888 University Drive, Burnaby, British Columbia, Canada V5A 1S6

Abstract

While skeletal muscle mass has been shown to decrease mass-specific mechanical work per cycle, it is not yet known how muscle mass alters contraction efficiency. In this study, we examined the effect of muscle mass on mass-specific metabolic cost and efficiency during cyclic contractions in simulated muscles of different sizes. We additionally explored how tendon and its stiffness alters the effects of muscle mass on mass-specific work, mass-specific metabolic cost and efficiency across different muscle sizes. To examine contraction efficiency, we estimated the metabolic cost of the cycles using established cost models. We found that for motor contractions in which the muscle was primarily active during shortening, greater muscle mass resulted in lower contraction efficiency, primarily due to lower mass-specific mechanical work per cycle. The addition of a tendon in series with the mass-enhanced muscle model improved the mass-specific work and efficiency per cycle with greater mass for motor contractions, particularly with a shorter excitation duty cycle, despite higher predicted metabolic cost. The results of this study indicate that muscle mass is an important determinant of whole muscle contraction efficiency.

Funder

Natural Sciences and Engineering Research Council of Canada

Publisher

The Royal Society

Subject

Biomedical Engineering,Biochemistry,Biomaterials,Bioengineering,Biophysics,Biotechnology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3